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Recent research (Zeng, PhD thesis, 2007; Zeng et al., Phys. Fluids, vol. 21, 2009, art.
no. 033302) has shown that both the shear- and wall-induced lift contributions on a
particle sharply increase as the gap between the wall and the particle is decreased.
Explicit expressions that are valid over a range of finite Re were obtained for the drag
and lift forces in the limiting cases of a stationary particle in wall-bounded linear
flow and of a particle translating parallel to a wall in a quiescent ambient. Here we
consider the more general case of a translating and rotating particle in a wall-bounded
linear shear flow where shear, translational and rotational effects superpose. We have
considered a modest Reynolds number range of 1–100. Direct numerical simulations
using immersed boundary method were performed to systematically figure out the
characteristics of hydrodynamic forces on a finite-sized particle moving while almost
in contact with a wall. We present composite correlation for the hydrodynamic forces
which are in agreement with all the available low-Reynolds-number theories.

1. Introduction
The hydrodynamic force on a finite-sized particle moving in a linear shear

flow close to a wall is a problem of fundamental importance in fluid mechanics.
The significance of this problem arises from its many practical industrial and
environmental applications. Some examples are dust removal from surfaces, droplet
deposition and resuspension of sand particles.

The effect of the wall is the strongest when the particle is in contact. The wall effect
decays rapidly as the distance between the particle and wall increases. For distances of
the order of 10 particle diameters or more, the wall effect can be reasonably ignored
(Goldman, Cox & Brenner 1967a, b). For example, in the case of a stationary particle
in contact with a flat wall, at low Reynolds numbers in a linear shear flow, the drag
coefficient is 70 % larger than what would be predicted by Stokes drag for an unboun-
ded uniform flow. Instead, if we consider a particle translating parallel to a flat wall
in a stagnant fluid, in the limit of particle touching and sliding on the wall, there is a
lubrication singularity. As the gap between the particle and the wall decreases, the drag
force logarithmically increases and becomes infinite when the particle comes into con-
tact with the wall. For instance, in the Stokes limit when the gap between the particle
and the wall is 7 % of particle diameter, the drag force will be twice that when the
wall is far away (Goldman et al. 1967a). This strong influence of the wall on the drag
force has been shown to persist even at finite Reynolds numbers (Zeng et al. 2009).
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The wall has a similar stronger influence on the lift force. There are three
hydrodynamic contributions to the lift force on a particle. In a shear flow, the
particle experiences the Saffman lift force (Saffman 1965). In a quiescent fluid, a
particle travelling parallel to a wall will experience a wall-induced lift force that
is directed normal to its motion (normal to the wall). Finally, a particle spinning
either in a uniform cross-flow or close to a wall in a quiescent fluid will experience a
rotation-induced lift force. The former is generally referred to as the Magnus lift and
was considered by Rubinow & Keller (1961). All these lift forces are inertial in origin
and are absent in a Stokes flow.

The problem of inertial lift on a stationary particle in contact with a flat wall
in a linear shear flow was analytically considered by Leighton & Acrivos (1985).
This analysis was later extended to the case of a translating and rotating particle
in contact with the wall by Krishnan & Leighton (1995). It was shown that the
lift force can be separated into six contributions. Three of the contributions arise
from the ambient shear, and the translational and rotational motions of the particle.
The other three contributions arise from shear–translation, translation–rotation and
shear–rotation binary couplings. These low-Reynolds-number results were confirmed
later by high-quality experiments (King & Leighton 1997).

The lift force is at its peak when the particle is in contact with the wall and falls
off quite rapidly as the gap between the particle and the wall increases. There have
been a number of asymptotic analyses that consider lift force on a particle in a shear
flow located near a flat wall. But most of these analyses do not consider the limit
of the particle touching the wall. The low-Reynolds-number asymptotic analysis of
Cherukat & McLaughlin (1994) is relevant, as it considered lift force on a particle
for arbitrary values of the gap between the particle and the wall. They presented
results only for the cases of no rotation and torque-free rotation of the particle (also
see Cherukat & McLaughlin 1994). In comparison, Krishnan & Leighton’s (1995)
analysis is valid for arbitrary translational and rotational motions of the particle, but
when the particle is in contact with the wall. Nevertheless, Cherukat & McLaughlin’s
results in the zero-gap limit are in excellent agreement with those of Krishnan &
Leighton. In particular, the results of Cherukat & McLaughlin for the case of a
non-rotating particle can be recast as an additive superposition of shear, translation-
and shear–translation contributions, suggesting the applicability of the superposition
presented in Krishnan & Leighton (1995) even when the particle is away from the
wall.

Hall (1988) and Mollinger et al. (1996) measured lift on a stationary spherical
particle in contact with a wall in a turbulent boundary layer and observed the lift to
be substantially larger than what would be predicted by Saffman lift in an unbounded
shear of the same magnitude. Later, Muthanna et al. (2005) measured lift force on
a stationary particle attached to a wall in a laminar linear shear layer and again the
effect of the wall was to substantially increase the lift force. Since the particle was not
allowed to move in these experiments, the implication is that wall–shear interaction
results in substantial enhancement of the lift force over pure shear-induced lift in an
unbounded shear flow.

For a particle not in contact with the wall, the non-dimensional gap between the
wall and the bottom of the particle (non-dimensionalized by the particle diameter)
is a key parameter. The analysis of Cherukat & McLaughlin (1994) is limited to the
wall being in the inner (viscous) region on the particle. This places a strong restriction
on the Reynolds number range over which the results are applicable. This restriction
can be relaxed if we consider larger gap values. In the limit of large gap, the wall
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being in the inner region or in the outer region has been analytically considered (for
example, see Cox & Hsu 1977; McLaughlin 1993; Magnaudet 2003).

The problem of drag and lift forces on a translating and rotating particle in a
shear flow close to a wall is characterized by the non-dimensional gap and three
Reynolds numbers – shear, translation and rotation Reynolds numbers. The results
of Krishnan & Leighton provide a complete description of the lift force in the limit
of zero gap and low Reynolds numbers. The other theoretical works mentioned
above together provide substantial (but not complete) description of the lift force for
arbitrary gap, provided all three Reynolds numbers are small.

The purpose of this paper is to consider the problem of a particle translating and
rotating on a flat wall in a linear shear flow and obtain results in the finite-Reynolds-
number regime and work towards a superposition of drag and lift contributions from
shear, translation and rotation mechanisms that are applicable at modest Reynolds
numbers. Fortunately, aspects of this complex problem have been considered in the
past. The problem of a bubble (clean and contaminated) moving parallel to a flat
wall in a quiescent fluid at finite Re was experimentally considered by Takemura
et al. (2002) and Takemura & Magnaudet (2003). These results were computationally
extended to rigid particles and higher Reynolds numbers by Zeng, Balachandar &
Fischer (2005) and Zeng et al. (2008). The above experiments and simulations limited
attention to only non-zero gaps between the particle and the wall. The recent work
by Zeng et al. (2009) has extended the results to the limit of a particle touching
and sliding on the wall in an otherwise quiescent fluid. The problem of a stationary
particle in a wall-bounded shear flow at finite Reynolds number and varying distances
from the wall, including the zero-gap limit, was also considered by Zeng et al. (2009).
Thus, if we consider the superposition suggested by Krishnan & Leighton (1995) to
apply even at finite Reynolds numbers, the shear and translation contributions have
been established for varying distances from the wall (Zeng et al. 2009).

Here we first perform a series of fully resolved simulations of a spinning sphere
in a quiescent fluid close to a flat wall. By systematically varying the gap between
the particle and the wall, we are able to approach the limit of particle touching the
wall. The rotational Reynolds number of the particle is also varied and thereby we
numerically establish the rotational contribution to the drag and lift forces. Motivated
by the theoretical results of Krishnan & Leighton, we computationally consider binary
interactions of shear–translation, shear–rotation and translation–rotation in the finite-
Reynolds-number regime. Combining these new simulation results with those of Zeng
et al. (2009), a finite-Reynolds-number extension to the drag and lift superposition is
proposed for the case of a particle in arbitrary translational and rotational motion in
a wall-bounded linear shear flow.

2. Problem description
Consider a spherical particle of diameter d rotating at an angular velocity Ω̃ about

the z-axis and translating at a velocity Ṽp parallel to the flat plate, which is located at a

distance L̃ from the centre of the particle (see figure 1). The ambient flow approaching
the particle is a linear shear flow, whose only non-zero velocity component is along
the x-axis parallel to the wall. The shear flow can be written as Ũ (ỹ) = G̃(ỹ + L̃),
where G̃ is the dimensional shear rate of the ambient flow.

We choose the particle diameter d to be the length scale. We set the velocity scale
to be Ṽ , which can be chosen to be the translational velocity of the particle (Ṽp), or

the local shear flow velocity at the centre of the particle (G̃L̃) or the relative velocity.
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Figure 1. A schematic representation of a moving sphere in a wall-bounded linear shear
flow and nomenclature used in this paper.

For now, we leave this definition unspecified. The time and pressure scales are defined
accordingly. The resulting non-dimensional governing equations are as follows:

∇ · u = 0,

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u + f .

⎫⎬
⎭ (2.1)

Here we employ an immersed boundary technique in order to impose the appropriate
velocity boundary conditions on the surface of the translating and rotating spherical
particle, as it moves through a fixed Cartesian grid. The details of the immersed
boundary technique and its accuracy will be discussed below. The local volume force,
f , arises from the immersed boundary technique and it enforces the motion of the
solid body. This force is identically zero outside the particle and we recover the
standard Navier–Stokes equation in the fluid.

The governing equations can be solved in a frame of reference fixed on the
particle and in this frame the computational grid around the particle becomes time
independent. In this translating frame, the ambient shear flow becomes G̃(ỹ + L̃)− Ṽp .

When the particle motion is in the direction of shear flow (i.e. when G̃, Ṽp > 0 or

G̃, Ṽp < 0), the ambient shear flow, as seen in the frame of reference translating with

the particle, switches sign (reverses direction) at ỹ = (−L̃ + Ṽp/G̃). For the cases of

a stationary particle in a shear flow (G̃ �= 0, Ṽp = 0) or a translating particle in a

quiescent medium (G̃ = 0, Ṽp �= 0), there is no ambient flow reversal as seen by the
particle. The corresponding boundary conditions on the left- and right-hand sides of
the computational domain are entirely inflow or outflow. Only in the case of combined
particle translation in a shear flow, which is being considered here, the ambient flow
direction changes as ỹ increases above the wall. The left and right boundaries of the
computational domain will then be partly inflow and partly outflow. Imposition of
such mixed boundary conditions on individual faces of the computational domain
poses challenge and thus computational results employing such mixed boundary
conditions must be appropriately verified.

Instead, if computations were to be performed in a fixed laboratory frame of
reference, the numerical methodology must be capable of handling the translational
motion of the particle. If a body-fitted grid such as the one employed in Zeng
et al. (2005, 2009) were to be used, then a complex time-dependent grid evolution
will be required to accommodate the particle motion. With the immersed boundary
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approach, we can enforce the boundary conditions corresponding to a translating–
rotating particle in a fixed Cartesian grid relatively easily. However, as will be discussed
below, the computational cost associated with simulating the moving particle in a
fixed laboratory frame is several times more than that associated with simulating a
moving frame, where the particle remains fixed. Here, with the immersed boundary
methodology, we will solve a few selected cases both in the moving and fixed reference
frames. Comparing the results, the accuracy of the moving-frame simulations will be
established.

If the location of the particle centre is given by xp , then the boundary conditions
to be employed in the laboratory frame of reference are given as follows:

u =

⎧⎪⎨
⎪⎩

Vpex − (x − xp) × 2Ωez for |x − xp| � 1/2,

2G(L + y)ex for |x − xp| → ∞,

0 for y = −L,

(2.2)

where the terms without tilde indicate non-dimensional quantities (Vp = Ṽp/Ṽ ,

G = (G̃d/2)/Ṽ , Ω = (Ω̃d/2)/Ṽ ) and x − xp is the position vector from the centre
of the particle. The grid to be employed in the simulations is clustered near the
particle to enhance resolution. In the case of laboratory-frame simulations, since
the particle moves with respect to the grid, we need to employ a fine grid along a
significant streamwise length of the computational domain. Such increased resolution
over an extended region of the computational domain is at the expense of significant
computational cost. In contrast, in the moving frame of reference with mixed boundary
conditions at the left and right ends of the computational domain, the region of high
resolution is confined to be only around the fixed particle. In all simulations, Neumann
boundary conditions are employed at the top and side (lateral) boundaries. In the
moving frame of reference, the boundary conditions (2.2) are modified accordingly.

In (2.1) the Reynolds number is defined as Re = Ṽ d/ν. Several other velocity scales
can be used in the definition of the Reynolds number. We can also define shear,
translation, rotation and relative Reynolds numbers as

Shear: Res =
|G̃|L̃d

ν
= 2|G|LRe,

Translational: Ret =
|Ṽp|d

ν
= |Vp|Re,

Rotational: ReΩ =
|Ω̃ |d2

ν
= 2|Ω |Re,

Relative: Rer =
|G̃L̃ − Ṽp|d

ν
= |2GL − Vp|Re.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

2.1. Numerical methodology

A second-order accurate central difference scheme is used for the spatial discretization
of the governing equations on a non-staggered Cartesian grid system. A fractional
step method is used for the time advancement. In the advection–diffusion step, the
nonlinear terms are treated explicitly using second-order Adams–Bashforth scheme
and the diffusion terms are treated implicitly with the Crank–Nicolson scheme. The
final divergence-free velocity is obtained at each time step with a pressure correction
step. Pressure correction requires the solution of the pressure Poisson equation (Zang
et al. 1994).
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Figure 2. Stretched grid system around a sphere near a smooth wall. For the case shown, the
number of grid points and domain sizes are 371×129 ×151 and [−25, 25]×[−0.505, 8]×[−7, 7].

In order to resolve the finite-sized spherical particle in the Cartesian grid, here we
employ the immersed boundary technique following the implementation suggested by
Uhlmann (2005). This direct forcing method allows the localized volume force, f ,
applied in (2.1) to be computed explicitly at each time step. The volume forces and
the transfer kernel function play an important role in transferring quantities between
particle-related Lagrangian and fluid-related Eulerian grid points. Here we use the
regularized delta function as the transfer kernel in which we use a three-point stencil
(Roma, Peskin & Berger 1999). For the Lagrangian grid, a uniform distribution of
points over the surface of the sphere is used (Saff & Kuijlaars 1997). These Lagrangian
forcing points are employed over the entire surface and inside of the surface to form
a multi-layer.

A non-uniform Cartesian grid employed in the simulations is shown in figure 2. The
Eulerian grid points are clustered close to the wall along the wall-normal direction
and clustered around the sphere along the spanwise direction. The clustering of points
is important in order to achieve a high degree of resolution around the sphere in
its representation in the immersed boundary method. In the immersed boundary
region that embeds the sphere, a uniform Cartesian mesh of equal resolution along
all three directions is used (�x = �y = �z). This high-resolution region extends over
[−L, 1] × [−1, 1] along the wall-normal and spanwise directions. In the case of a
stationary particle centred about the origin in the computational frame of reference,
the region of high resolution is limited over the streamwise direction and extends
from [−1, 1]. When simulating a translating particle in a stationary laboratory frame
of reference, first the streamwise extent of the computational domain needs to be
long in order to accommodate the streamwise movement of the particle. Second, the
streamwise extent of higher resolution is long and chosen to cover the entire trajectory
of the particle, thus adding to the computational cost.

Outside this region of the uniform grid, a geometric grid stretching is used. Each
successive grid spacing is progressively increased by a multiplicative factor α. The
value of the stretch parameter α, the size of the computational domain and the
number of grid points used to resolve one sphere diameter in the uniform grid region
(Np) dictate the number of grid points used. The overall grid resolution used in the
simulations is up to 371 × 301 × 151 points. The computational domain employed in
the simulations extends over [−25, 25] × [−L, 8] × [−7, 7] units along the streamwise,
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Number of grid Domain size CD,r CL,r

1/�x Nx × Ny × Nz Lx × Ly × Lz Value Difference (%) Value Difference (%)

20 193 × 71 × 97 [−25, 25] × [−0.505, 8] × [−7, 7] 1.431 15.4 0.174 8.4
30 257 × 97 × 129 [−25, 25] × [−0.505, 8] × [−7, 7] 1.240 2.4 0.190 2.1
40 371 × 129 × 151 [−25, 25] × [−0.505, 8] × [−7, 7] 1.225 1.2 0.194 1.0
50 431 × 151 × 177 [−25, 25] × [−0.505, 8] × [−7, 7] 1.211 – 0.196 –

Table 1. Grid resolution test for the case of VP = −1, L = 0.505, Res = 100. We present the
drag and lift coefficients for different resolutions. The finest grid results are taken to be the
baseline and percentile differences between with the finest and the coarse grids defined as
difference = |(φcoarser − φfinest )/φfinest | × 100 (%) are presented.

wall-normal and spanwise directions. The choice of the domain is consistent with
those used in Zeng et al. (2009), who established the adequacy of the computational
domain. The simulation results to be discussed here typically involve 40 grid points
resolving one particle diameter in the high-resolution region. The overall number of
grid points for such a simulation varies from 371 × 129 × 151 grid points along the
streamwise, wall-normal and spanwise directions (for L ∼ 0.5) to 371 × 301 × 151 grid
points (for L = 4). The increased resolution for L = 4 in the wall-normal direction is
due to the larger region of high resolution. Only for the case of a particle under pure
rotation (without translation or ambient shear to be described in § 3.1) we use a larger
domain that extends in the wall-normal direction [−L, 25] in order to minimize the
effect of the finite domain size.

2.2. Grid independence and validation

First we establish the number of grid points needed within the context of immersed
boundary method in order to achieve adequate resolution of the spherical particle.
As a test we consider the case of a particle translating along the negative x-
direction in a linear shear flow. The particular case considered is characterized by
Vp = Ṽp/(G̃L̃) = −1, L = 0.505 and Res = 100. Four different levels of resolution are
employed (1/�x = 20, 30, 40 and 50). The drag and lift coefficients based on relative
velocity (CD,r = F̃x/((π/8)ρ(G̃L̃ − Ṽp)2d2) and CL,r = F̃y/((π/8)ρ(G̃L̃ − Ṽp)2d2)) for
the different simulations are presented in table 1. Also presented are the domain size
and the number of grid points used in these simulations. Based on the above results,
the bulk of the results to be presented (unless otherwise stated) are obtained with a
resolution of 1/�x = 40.

Here, the results of Zeng et al. (2005, 2009), obtained using the higher order
accurate spectral element methods, will be used as the benchmark in validating the
present numerical approach. Rigorous testing and validation of the spectral element
approach have already been presented in these earlier works. Figure 3 shows the
comparison of drag and lift coefficients for several cases of stationary particle in a
linear wall-bounded shear flow and several cases of particle translating parallel to a
flat wall in a quiescent fluid. In figures 3(a) and 3(b) we present the drag and lift
coefficients, defined as

CD,s =
F̃x

π

8
ρG̃|G̃|L̃2d2

and CL,s =
F̃y

π

8
ρG̃2L̃2d2

, (2.4)
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Figure 3. Comparison of drag and lift coefficients obtained with the present code against
those obtained with the spectral element methodology of Zeng et al. (2005). (a) Drag and (b)
lift for a stationary particle in a linear wall-bounded shear flow. (c) Drag and (d) lift for a
translating particle in a quiescent fluid.

for the case of a stationary particle in a linear wall-bounded shear flow and compare
results with those of Zeng (2007). The results for both the case of a particle almost
touching the wall (L = 0.505) and the case of a particle away from the wall (L = 1.0)
are compared over a range of Reynolds numbers. Also shown is the standard drag
correlation (Schiller & Naumann 1933). In the immersed boundary approach, the
sphere is resolved with 40 grid points across one particle diameter (i.e. 1/�x = 40). The
comparison is generally quite good and the spectral element results are well recreated
with the present immersed boundary approach. Some difference can be observed in
figure 3(b) for the highest Reynolds number case. Note that the lift coefficient is
plotted on a log scale and thus the difference between the two approaches contributes
to differences when the lift force is very small.

The corresponding translation-induced force coefficients for the case of a particle
in translation parallel to a wall are defined as

CD,t =
F̃x

π

8
ρṼp|Ṽp|d2

and CL,t =
F̃y

π

8
ρṼ 2

p d2
. (2.5)
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Res Vp = (Ṽp/G̃L̃) L 1/�x Method CD,s CL,s

10 −1.0 1 30 Moving frame 12.159 1.336
Laboratory frame 12.164 1.337

10 0.5 1 30 Moving frame 2.316 0.409
Laboratory frame 2.318 0.411

100 0.5 1 30 Moving frame 0.581 0.190
Laboratory frame 0.584 0.192

Table 2. Comparison between the moving frame and laboratory frame simulations.

Drag and lift coefficients obtained from the present numerical approach are compared
with those from the spectral element simulations for the case of Vp = Ṽp/|Ṽp| = −1.
The comparison is quite good even for the extreme case of close proximity between
the particle and the wall. Additional validation of the present numerical results is
presented in § 3, where appropriate comparisons are made with low-Reynolds-number
theories.

We now establish the appropriateness of simulations performed in the frame of
reference attached to a translating particle in a linear shear flow by comparing results
with those performed in a laboratory frame where the particle moves through the
fixed Cartesian grid. Here we refer to the former as the ‘moving-frame simulation’
and the latter as the ‘laboratory-frame simulation’. Table 2 presents a comparison of
the two simulations for a range of conditions. The small differences in results can be
attributed to the different streamwise extent of the computational domains used in
the two approaches and also to differences in the implementation of the streamwise
boundary conditions.

3. Results
3.1. Particle rotation in a quiescent fluid near a flat wall

Here we plan to complement our current understanding of the shear-induced forces
on a stationary particle in a linear shear flow and the translation-induced forces on
a particle moving parallel to a wall in a quiescent fluid. We will perform a systematic
investigation of a particle spinning about the z-axis in a quiescent fluid. By performing
well-resolved simulations of this problem for rotational Reynolds numbers over the
range 1 � ReΩ � 100 and for the following distances from the wall, L = 0.505, 0.525,
0.55, 0.625, 0.75, 1, 2 and 4, we will develop a better understanding of the pure
rotation-induced forces on a particle in the presence of a nearby wall.

3.1.1. Flow features

We examine the flow induced by the rotating particle by plotting streamlines,
pressure and vortical structures around the particle for ReΩ = 10 and 100 in figures
4–7. In figures 4 and 5 the streamlines and pressure contours are plotted on the
symmetry plane (z = 0) for three distinct particle locations (L = 0.505, 1 and 4), and
the particle rotation is counterclockwise.

In figure 4 several prominent features can be observed in the streamlines. In the
immediate vicinity of the sphere on the symmetry plane, we observe the streamlines to
spiral out in the counterclockwise direction. The fluid rotation about the z-axis due to
the spinning sphere causes a low-pressure region around the particle (see figure 5). This
low-pressure draws fluid along the spanwise direction inwards towards the sphere,
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Figure 4. Streamline patterns on the symmetry plane (z = 0) of a purely rotating particle.
(a), (c) and (e) ReΩ = 10; (b), (d ) and (f ) ReΩ = 100. (a) and (b) L = 0.505; (c) and (d) L = 1;
(e) and (f) L = 4.

which is spun outwards along the symmetry plane (z = 0). This is a finite-Reynolds-
number feature of the flow. In the zero-Reynolds-number limit, the flow around a
spinning particle (often termed Rotlet) is purely circumferential and the pressure is
uniform. At finite Re, the radial outflow exists even in the absence of the wall and
gets modified as the particle gets closer to the wall. The spiralling flow pattern on the
symmetry plane results in two hyperbolic fixed points on the wall, which are clearly
visible as the gap between the particle and the wall increases. Without the wall, flow
around the particle will be perfectly axisymmetric about the z-axis. The wall breaks
the axisymmetry and a spinning particle will experience higher shear stress in the gap
region below the particle than above it. The broken axisymmetry thus results in a
non-zero drag force, and for a particle rotating counterclockwise (positive z-rotation),
this force is directed in the negative x-direction.
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Figure 5. Pressure distributions on a symmetric plane (z = 0) of a purely rotating particle. (a),
(c) and (e) ReΩ = 10; (b), (d ) and (f ) ReΩ = 100. (a) and (b) L = 0.505 (p : [−1, 1], �p = 0.04);
(c) and (d) L = 1 (p : [−0.1, 0.1], �p = 0.004); (e) and (f) L = 4.0 (p : [−0.1, 0], �p = 0.002).

Contours of pressure for different gaps and ReΩ are shown in figure 5. Here we used
the far-field pressure as the reference pressure. When the particle is almost sitting on
the wall (L = 0.505), as shown in figures 5(a) and (b), high- and low-pressure regions
occur to the left and the right of the particle, respectively. The high pressure is due
to the fluid being squeezed into the small gap between the particle and the wall.
The integrated pressure-induced streamwise force on the particle is directed in the
positive x-direction. Nevertheless, the distribution of pressure around the particle is
such that the pressure contribution to the drag force is much weaker than that from
the shear stress and thus the net drag force on the particle is towards the negative
x-direction. As the gap increases, the effect of the wall weakens. For L = 4, the high-
and low-pressure regions in the gap are not discernible and only a low-pressure
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Figure 6. Surface pressure distribution as a function of angle on the z = 0 plane for different
gap values between the particle and the wall: (a) ReΩ = 10; (b) ReΩ = 100.

region is seen distributed around the particle. As seen in figure 4 the lower pressure
draws fluid inwards towards the particle along the spanwise (z) direction and spirals
it out along the radial direction. To further clarify the pressure effect, we present
the pressure distribution on the particle along the symmetry plane in figure 6. At
L = 0.505, relatively strong pressure variation around the particle can be observed.
For ReΩ = 10 and 100, even though the magnitude of peak pressure is different, the
highest and lowest pressures occur at similar angles of θHP ≈ 17◦, θLP ≈ 343◦. At large
gap values (L = 1 and 4), the pressure variation around the particle is much smaller
than for L = 0.505.

Figure 7 shows the vortical structures around the rotating particle for three selected
distances from the wall (L = 0.505, 1 and 4). In this figure the left column (a, c, e)
and the right column (b, d, e) represent ReΩ = 10 and 100, respectively. The vortex
structures are identified by plotting contours of swirling strength (λci = 0.1), defined
as the imaginary part of the complex eigenvalues of the local velocity gradient tensor
(Zhou et al. 1999; Chakraborty, Balachandar & Adrian 2005). At the lower Reynolds
number (ReΩ = 10), the vortex structures appear as circular patches on either side of
the particle. At the higher Reynolds number of ReΩ = 100, we can see an additional
pair of ‘doughnut-shaped’ symmetric vortex structures appearing on either sides of the
sphere. At both Reynolds numbers if the particle is located sufficiently away from the
wall (L = 4), then the vortex structures are nearly axisymmetric, suggesting the wall
effect on the particle to be nearly negligible at this distance. As the particle approaches
the wall, the vortex structures are initially distorted and, as the gap approaches zero,
the distortion increases and the vortex structures appear to be somewhat broken.

3.1.2. Drag force

In the present case, rotational drag, lift and moment coefficients on the sphere are
defined as follows:

CD,Ω =
−F̃x

π

32
ρΩ̃ |Ω̃ |d4

, CL,Ω =
F̃y

π

32
ρΩ̃2d4

and CM,Ω =
−T̃z

π

64
ρΩ̃ |Ω̃ |d5

. (3.1)

The drag coefficients obtained from the simulations are plotted as symbols in
figure 8(a) as a function of L in log-linear scale for different Reynolds numbers.
The rapid increase in drag coefficient as the wall is approached is clear. For small
and large values of the gap, the results can be compared with the lubrication theory
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Figure 7. Vortical structures of a purely rotating particle close to a wall (swirling strength
λci = 0.1). (a), (c) and (f ) ReΩ = 10; (b), (d ) and (f ) ReΩ = 100. (a) and (b) L = 0.505; (c) and
(d) L = 1.0; (e) and (f) L = 4.0.

of Goldman et al. (1967a), and with results obtained from the method of reflection,
respectively. Here we rewrite the drag coefficient as a resistance coefficient as defined
in Goldman et al. (1967a):

fx,Ω =
−2F̃x

3πµΩ̃d2
=

ReΩCD,Ω

48
. (3.2)

The low-Reynolds-number behaviour of the resistance coefficient for small-gap (from
lubrication theory) and for large-gap (from method of reflections) limits can be
expressed in terms of the non-dimensional gap (ε = 2L− 1) as (Goldman et al. 1967a)

fx,Ω ∼ − 2

15
ln ε − 0.2526 for ε 	 1 and fx,Ω∼1

8

(
1

1 + ε

)4(
1 − 3

8(1 + ε)

)
for ε 
 1.

(3.3)

Experiments were carried out to measure both the translational and rotational
velocities of a sphere moving parallel to a wall (Ma�lysa & van de Ven 1986).
According to their measurements, Goldman et al.’s (1967a) lubrication theory predicts
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Figure 8. (a) Drag coefficients of a rotating particle for different rotation Reynolds numbers
and gap distances. Symbols: results from the numerical simulations; lines: from (3.4). (b)
Dimensionless resistance coefficient compared with the low-Reynolds-number theories.

well for small gaps of ε < 0.04 and the method of reflections is accurate for large
gap values of ε > 0.3. However, at intermediate gaps, both theories cannot accurately
predict the force on the sphere.

In figure 8(b) the resistance coefficient computed from the simulations are plotted as
a function of ε. Also plotted are the results of the lubrication theory and the method of
reflections. At all gaps considered, the drag force as expressed in terms of resistance
coefficient is nearly independent of Reynolds number up to about ReΩ ∼ 10. The
agreement with the low-Reynolds-number theories is quite good at both the small-
and large-gap limits. At small gaps, the resistance coefficient increases with ReΩ , but
at intermediate values of the gap, the resistance coefficient decreases with ReΩ . At
large gaps, the drag force is nearly zero and above a certain Reynolds number the
approach seems to be from below. Thus, above a certain Reynolds number, the drag
force becomes negative at intermediate values of the gap. This behaviour is similar
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Figure 9. Lift coefficients of a rotating particle for different rotation Reynolds numbers
and gap distances. Symbols and lines are the results from numerical simulations and (3.5),
respectively. The inset shows results for the case of particle touching the wall for varying
Reynolds number. These results are extrapolated from the numerical simulations to L = 0.5.

to that observed for the cases of a wall-bounded shear flow over a particle and of
a translating particle parallel to a wall in a quiescent fluid (Zeng et al. 2009). In
both these cases, at intermediate values of gap, the drag force on the particle was
observed to be lower than what would be in the absence of the wall. Such reduction
was also identified in the theoretical results of Vasseur & Cox (1976), who explained
this reduction in terms of a potential contribution induced by an inflow and outflow
from the wall boundary layer. A similar mechanism can be expected to be active in
the present case of a spinning particle at sufficient wall–particle separation.

Here we obtain a simple correlation for the drag coefficient for the spinning sphere
in the proximity of a wall:

CD,Ω (L, ReΩ ) =
0.2425

ReΩ

(L2 − 0.4252L − 0.02743)−1. (3.4)

In figure 8(a), the calculated drag using (3.4) is plotted as lines over the Re and L range
considered in the simulations. The above expression provides a good approximation
for the numerical results over this range. Also, the difference between the above
expression and the results of Goldman et al. (1967a) at low ReΩ is sufficiently small
that (3.4) can be taken to be adequate. However, note that in the low-Reynolds-
number limit, the above correlation does not capture the logarithmic singularity as
L → 1/2 and the L−4 decay for large separation, as indicated in (3.3). An improved
expression that obeys these limits can be constructed, but it is observed to be far more
complex. For Re < 100 and 0.505 � L � ∞, the above simpler expression is observed
to be quite accurate.

3.1.3. Lift force

In figure 9 the lift coefficient evaluated from the simulations is plotted as a function
of L for different Reynolds numbers. In the limit of particle touching the wall (L = 0.5)
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and ReΩ → 0, the asymptotic theory of Krishnan & Leighton shows that CL,Ω →
0.348. Similarly, the asymptotic analysis of Cherukat & McLaughlin can be used to
obtain CL,Ω as a function of L in the limit of small Reynolds number (see figure 2
in Krishnan & Leighton 1995). This low-Reynolds-number result can be fit well with
the following expression: CL,Ω (L, ReΩ → 0) = 0.348[1 + tanh(−0.767(2L − 1)0.563)].
The results from the low-Reynolds-number asymptotic analysis are also plotted in
figure 9 as symbols and the agreement with the computational results of ReΩ = 1 is
very good. This provides additional validation for the adequacy of present numerical
resolution and the size of the computational domain.

The rotation-induced lift force falls off rapidly as the particle position moves away
from the wall. The sequence of simulation results for small L can be extrapolated
to obtain the lift force on a particle sitting on the wall. The inset in figure 9 shows
CL,Ω (L = 1/2, ReΩ ) as a function of ReΩ , and a good fit for this Reynolds number
dependence is given by 0.348 − 0.000795 ReΩ and it is accurate for ReΩ � 100. It can
be readily seen that at all separations from the wall, for small Reynolds numbers,
CL,Ω is nearly a constant only weakly dependent on ReΩ . This is in contrast to the
drag coefficient, CD,Ω , which has a Re−1

Ω behaviour at low Reynolds numbers. The
following expression for the lift coefficient has been found to be effective in describing
the simulation results:

CL,Ω (L, ReΩ ) = (0.348 − 0.000795ReΩ )
[
1 + tanh

((
− 0.767 − 0.00018Re1.785

Ω

)
× (2L − 1)0.563+0.00317ReΩ

)]
for ReΩ � 100. (3.5)

Note that it precisely reduces to the correct behaviours both in the limit of low
Reynolds number and in the limit of the particle touching the wall.

3.1.4. Moment coefficient

Following Goldman et al. (1967a), the torque on the particle can be expressed in
terms of a rotational resistance coefficient as

tz,Ω =
−T̃z

πµΩ̃d3
=

ReΩCM,Ω

64
. (3.6)

In figure 10(a) we present the moment coefficient, CM,Ω , obtained from numerical
simulations plotted as a function of L in log–log scale for different values of the
rotational Reynolds number. The low-Reynolds-number behaviour of tz,Ω for small
gaps is given by the lubrication theory and, for large gaps, it is given by the method of
reflections. Goldman et al. (1967a) have expressed tz,Ω in terms of the non-dimensional
gap as

tz,Ω ∼ 2

5
ln ε − 0.3817 for ε 	 1 and tz,Ω∼ −

(
1+

5

16(1+ε)3

)
for ε 
 1.

(3.7)

Figure 10(b) shows tz,Ω obtained from the simulations plotted as a function of ε

on a linear scale. Also plotted are the results of the lubrication theory and the
method of reflections. Over the entire range of gap considered, tz,Ω is observed to
be nearly independent of Reynolds number provided ReΩ is less than about 10. The
agreement with the low-Reynolds-number theories is quite good at both the small-
and large-gap limits. The change in the behaviour of tz,Ω with Reynolds number is
qualitatively similar to that observed for the resistance coefficient shown in figure 8(b).
We observe the computed torque values at small separations to be more sensitive
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Figure 10. (a) Momentum coefficients and (b) dimensionless torque acting on a rotating
particle for different Reynolds numbers and gaps between the particle and the wall.

than the force components. An expression for the moment coefficient of a particle
undergoing rotational motion is given in (A 1) in the appendix. The expression is
shown in figure 10(a) as lines and can be seen to well approximate the numerical
results over the entire range of Re and L considered in this study.

3.1.5. Comparison of shear, translation and rotation forces

We compare the relative importance of the shear-, translation- and rotation-induced
drag and lift forces in the limiting case of a particle in contact with the wall. Figure 11
shows the drag and lift coefficients for the three different cases plotted as a function
of their respective Reynolds number. The definition of the shear-, translation- and
rotation-induced force coefficients are given in (2.4), (2.5) and (3.1). Figure 11(a)
shows a comparison of the three drag coefficients and all of them monotonically
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Figure 11. Forces due to shear flow, translation and rotation motion of a particle in contact
with a wall. (a) Drag and (b) lift coefficients. Note that in the case of translation and rotation,
the drag coefficients are for L = 0.505.

decrease with Re. It is clear that the rotation-induced drag is the weakest of the
three. We can see that below a critical Reynolds number of about 42, translation-
induced drag is larger than shear-induced drag. On the other hand, shear-induced
drag becomes dominant beyond this Reynolds number. For the cases of a particle
either in translation or in rotation, the drag force on the particle has a logarithmic
singularity and becomes infinite when the particle comes into contact with the wall.
But in reality the drag force on the particle will remain finite, since roughness of the
particle and the wall will limit the effective gap to be non-zero. In figure 11(a) the
results for translation and rotation are for a small separation of L = 0.505.

The Reynolds number dependence of the shear- and translation-induced drag
coefficients for the general case of a particle close to a flat wall were presented in
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Zeng et al (2009). The corresponding rotational drag expression is given in (3.4).
These correlations reduce to the following relations in the limit of a particle touching
the wall (or nearly touching the wall in the case of particle translation or rotation).
Here and henceforth the letter ‘w’ in the subscript for drag and lift coefficients
indicate that the values are applicable strictly in the limit of particle touching the
wall. While the letter ‘w̃’ in the subscript indicates that the correlation is for almost
touching the wall and in the present paper we arbitrarily choose L = 0.505 to be
sufficiently close to the wall. Thus, the correlations with ‘w̃’ in the subscript are
subject to change if a different value of particle-to-wall separation is considered:

CDs,w =
40.81

Res

(
1 + 0.104Re0.753

s

)
,

CDt,w̃ = CDt (Ret , L = 0.505) =
81.96

Ret

(
1 + 0.01Re0.959

t

)
,

CDΩ,w̃ = CDΩ (ReΩ, L = 0.505) =
18.84

ReΩ

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.8)

From figure 11(b) it is clear that the shear-induced lift is the strongest of the three
and rotation-induced lift is the weakest. For instance, in the limit of small Reynolds
number, the shear-induced lift coefficient is 5.87, while that due to translation is more
than 5 times smaller at 1.12, and the rotation-induced lift coefficient is more than
16 times smaller at 0.348 (Krishnan & Leighton 1995). Equation (3.5) gives the
Reynolds number behaviour of rotational lift coefficient and the corresponding
correlations for the shear and translational lift coefficients have been obtained in
Zeng et al. (2009) as

CLs,w =
3.663(

Re2
s + 0.1173

)0.22
,

CLt,w̃ = 0.313 + 0.812 exp
(
−0.125Re0.77

t

)
,

CLΩ,w̃ ≈ 0.348 − 0.000795 ReΩ.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.9)

As indicated by the above expressions, shear-induced lift coefficient rapidly decreases
at small Reynolds numbers, while for the translation-induced lift coefficient, the
decay rate is modest. In contrast, the rotation-induced lift is nearly independent of
ReΩ at small Reynolds numbers. Thus, with increasing Reynolds number, the three
different lift coefficients approach each other. But over the entire Reynolds number
range considered here, the shear lift remains the strongest.

3.2. Superposition at finite Re

3.2.1. Lift superposition

The low-Reynolds-number results of Krishnan & Leighton (1995) for a particle
rotating and translating parallel to a flat wall in a shear flow can be recast in the
following form for the lift coefficient:

CL,w(Re → 0) =
F̃y

π

8
ρd2Ṽ 2

=
2

π

[
λ1G

2 + λ2V
2
p + λ3Ω

2 + λ4GVp − λ5GΩ − λ6VpΩ
]
,

(3.10)

where the first three terms on the right are the shear, translation and rotation
contributions to lift and the latter three are shear–translation, shear–rotation and
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translation–rotation binary coupling contributions to lift. Krishnan & Leighton (1995)
obtained the constants to be λ1 = 9.257, λ2 = 1.755, λ3 = 0.546, λ4 = −9.044, λ5 = 1.212
and λ6 = −2.038. Note that the velocity scale (Ṽ ) remains unspecified, and it can be
chosen to be any one of G̃d/2, Ṽp or Ω̃d/2. Suppose if we choose Ṽ = G̃d/2, then
non-dimensional shear becomes G = 1 and the other two non-dimensional quantities
are Vp = 2Ṽp/(G̃d) and Ω = Ω̃/G̃. However, this scaling becomes inappropriate in the
absence of shear. The advantage of the above equation is that it remains applicable
even in the limit when some of the mechanisms are absent. Here we will assume
the above superposition to hold qualitatively even at finite Reynolds numbers and
propose the following form for the lift coefficient:

CL,w = CLs,wG2 + CLt,wV 2
p + CLΩ,wΩ2 +

2λ4

π

CLs,wCLt,w

CLs,w0CLt,w0

GVp fst

(
Res,

Vp

G

)

−2λ5

π

CLs,wCLΩ,w

CLs,w0CLΩ,w0

ΩG fsΩ

(
Res,

Ω

G

)
− 2λ6

π

CLt,wCLΩ,w

CLt,w0CLΩ,w0

VpΩ ftΩ

(
Ret ,

Ω

Vp

)
.

⎫⎪⎪⎬
⎪⎪⎭
(3.11)

When only one lift mechanism is active with the other two mechanisms being absent,
the last three binary coupling terms are identically zero. Depending on whether shear
(Vp = 0 and Ω = 0), translation (G = 0 and Ω = 0) or rotation (G = 0 and Vp = 0)
is active, respectively, the first, second or third term on the right makes the only
non-zero contribution. Note that positive Ω here corresponds to counterclockwise
rotation and is opposite to the convention adopted in Krishnan & Leighton (1995).
This contributes to the minus signs in the last two coupling terms in (3.11).

The assumed coupling terms are motivated by their low-Reynolds-number form.
For example, the lift contribution from shear–translation coupling is assumed to be
proportional to CLs,wCLt,wGVp and any deviation from this is taken into account
with the function fst . Similarly the functions fsΩ and ftΩ account for finite-Reynolds-
number deviations in the shear–rotation and translation–rotation couplings. In the
limit of zero Reynolds number, these correction functions reduce to unity, i.e.
fst (Res → 0) → 1, fsΩ (Res → 0) → 1 and ftΩ (Ret → 0) → 1. In the above equation,
the additional subscript ‘0’ in the lift coefficients correspond to the Re → 0 limit. By
comparing the first three terms of (3.10) and (3.11), we obtain

CLs,w0 =
2λ1

π
, CLt,w0 =

2λ2

π
and CLΩ,w0 =

2λ3

π
. (3.12)

Here we will consider scenarios where only two of these mechanisms are
simultaneously active. Detailed simulations of shear–translation, shear–rotation and
translation–rotation scenarios will be considered below. In this manner we will obtain
best approximations to functions fst , fsΩ and ftΩ that are valid over a range of
Reynolds number. First, we will consider the case of a particle perfectly sliding on
the wall, in which case the rotational motion of the particle is absent (Ω = 0). The
lift superposition given in (3.11) with the use of (3.12) can then be expressed as

CLst,w

(
Res,

Vp

G

)
=

CL,w|Ω=0

G2
= CLs,w + CLt,w

(
Vp

G

)2

+
πλ4CLs,wCLt,w

2λ1λ2

Vp

G
fst

(
Res,

Vp

G

)
.

(3.13)

Second, we will consider the case of a particle undergoing rotation with the axis of
rotation perpendicular to a linear shear flow, while the particle is in contact with the
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wall. Again the lift superposition given in (3.11) with the use of (3.12) reduces to

CLsΩ,w

(
Res,

Ω

G

)
=

CL,w|Vp=0

G2
= CLs,w + CLΩ,w

(
Ω

G

)2

− πλ5CLs,wCLΩ,w

2λ1λ3

Ω

G
fsΩ

(
Res,

Ω

G

)
. (3.14)

In the above two relations, the division of CL,w by G2 is tantamount to choosing
G̃d/2 to be the velocity scale in the definition of the lift coefficients CLst,w and CLsΩ,w .
From definition, we have |Vp/G| = Ret/Res and |Ω/G| = ReΩ/(2Res). Thus, CLst,w

and fst can be re-expressed as functions of Res and Ret , and similarly CLsΩ,w and
fsΩ can be re-expressed in terms of Res and ReΩ . However, since we have followed
the convention and defined the Reynolds numbers to be positive (see (2.3)), (3.13)
has been defined to accommodate the relative directions of shear and translation and
similarly (3.14) for shear and rotation.

Finally, we will consider the case of a particle undergoing both translation and
rotation while in contact with the wall in an otherwise quiescent ambient fluid. The
axis of rotation is parallel to the wall, but perpendicular to the direction of translation.
Thus, depending on the magnitude of translation versus rotation, the particle can be
considered to be sliding or rolling on the wall. The lift superposition given in (3.11)
with the use of (3.12) reduces to

CLtΩ,w

(
Ret ,

Ω

Vp

)
=

CL,w|G=0

V 2
p

= CLt,w + CLΩ,w

(
Ω

Vp

)2

− πλ6CLt,wCLΩ,w

2λ2λ3

Ω

Vp

ftΩ

(
Ret ,

Ω

Vp

)
. (3.15)

Here the division of CL,w by Ṽ 2
p translates to choosing Ṽp to be the velocity scale.

3.2.2. Drag superposition

The drag superposition in the zero-Reynolds-number limit is simpler than that of
the lift force. The drag force is given by a simple superposition of the shear, translation
and rotation contributions and there are no cross-coupling contributions in the limit
Re → 0. At finite Re, nonlinear interaction will introduce cross-coupling between the
different mechanisms. Following lift superposition, we define the overall superposition
that is appropriate when all three mechanisms of shear, translation and rotation
are simultaneously active to be expressed as a combination of the three individual
mechanisms and their binary interactions. The composite drag superposition can then
be expressed as

CD,w̃ =
F̃x

π

8
ρd2Ṽ 2

= CDs,wG|G| − CDt,w̃Vp|Vp| − CDΩ,w̃Ω |Ω |

− |G|Vpgst

(
Res,

Vp

G

)
−|G|ΩgsΩ

(
Res,

Ω

G

)
− |Vp|Ω gtΩ

(
Ret ,

Ω

Vp

)
. (3.16)

For simplicity, it is assumed that even when all three mechanisms are active, their
nonlinear interaction can be described in terms of binary cross-couplings. It is thus
assumed that simultaneous three-way interaction between shear, translation and
rotation, and its effect on drag and lift forces are not important. The three correction
functions, gst , gsΩ and gtΩ , embody the nonlinear binary cross-coupling between the
different mechanisms. These corrections should vanish in the limit of zero Reynolds
number, i.e. gst (Res → 0) → 0, gsΩ (Res → 0) → 0 and gtΩ (Ret → 0) → 0.
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In the following sections we will consider the three cases of shear–translation, shear–
rotation and translation–rotation binary superpositions one at a time and obtain the
correction functions. In the case where a particle perfectly slides on the wall in a
linear shear flow with the rotational motion of the particle being absent (Ω = 0), the
drag superposition reduces to

CDst,w̃

(
Res,

Vp

G

)
=

CD,w̃|Ω=0

G |G| = CDs,w − CDt,w̃

Vp

G

∣∣∣∣Vp

G

∣∣∣∣ − Vp

G
gst

(
Res,

Vp

G

)
, (3.17)

where gst is the shear–translation drag correction to be determined. Next, when we
consider the problem of particle undergoing pure rotation in a linear shear flow, while
the particle is in contact with the wall, the following superposition of drag coefficient
is proposed:

CDsΩ,w̃

(
Res,

Ω

G

)
=

CD,w̃|Vp=0

G |G| = CDs,w − CDΩ,w̃

Ω

G

∣∣∣∣ΩG
∣∣∣∣ − Ω

G
gsΩ

(
Res,

Ω

G

)
. (3.18)

We then consider the case of a particle undergoing both translation and rotation
while in contact with the wall in an otherwise quiescent ambient fluid. In this case,
we propose the following superposition of drag coefficient:

CDtΩ,w̃

(
Ret ,

Ω

Vp

)
=

CD,w̃|G=0

Vp |Vp| = −CDt,w̃ − CDΩ,w̃

Ω

Vp

∣∣∣∣ Ω

Vp

∣∣∣∣ − Ω

Vp

gtΩ

(
Ret ,

Ω

Vp

)
.

(3.19)

3.3. Particle sliding on a wall in a linear shear flow

Here we perform simulations of a particle in contact with a flat wall and sliding in
the direction parallel to the shear flow. If the direction of sliding is against that of the
shear flow, then drag and lift contributions tend to reinforce each other and become
large. But, more likely the particle will slide in the direction of shear flow, and in this
case, the relative velocity as seen by the particle decreases and the contributions to
force from shear and translation tend to oppose each other.

Simulations were performed for a range of shear Reynolds number (1 � Res � 100)
and a range of relative translation velocity (−1 � Vp/G = 2Ṽp/(G̃d) � 0.75). For
Vp/G = −1, the particle velocity is the same as the local ambient shear flow velocity
at ỹ = 0 and since particle translates against the shear flow, the Reynolds number
based on relative velocity becomes 2Res . On the other hand, in the case of particle
translating in the direction of shear flow, the simulations have considered only up to a
translation velocity of 75 % of the local shear flow velocity at the centre of the particle.
Figure 12(a) shows the computed lift coefficient plotted as symbols against Res for
different values of Vp/G. In this figure the lift coefficient has been normalized with the

shear velocity (G̃d/2) as the velocity scale and, in this non-dimensionalization, CLst,w

progressively decreases with increasing Vp/G. Instead, if the non-dimensionalization is
with the relative velocity as the velocity scale, then the lift coefficient shown in figures
must be scaled by 1/(1 − (Vp/G))2. Note that the scaling factor is 0.25 for Vp/G = −1,
but becomes 16 for Vp/G = 0.75. Thus, the lift coefficient increases with increasing
Vp/G when non-dimensionalized by the relative velocity, which is consistent with the
fact that the Reynolds number based on relative velocity decreases with increasing
Vp/G (provided Vp/G < 1).

In order to evaluate the importance of the shear–translation coupling term, in
figure 12(b) the computed lift coefficient minus (CLs,w + CLt,w(Vp/G)2) is plotted as
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Figure 12. Lift coefficients of a translating particle in a linear shear flow. (a) Numerical
results are presented as symbols and the superposition given in (3.14) is plotted as the
lines. (b) Comparison of (CLst,w − CLs,w − CLt,w(Vp/G)2) (symbols) with the coupling term
πλ4CLs,wCLt,wVp/(2λ1λ2G) (lines).

symbols for the different combinations of Res and Vp/G considered. Also plotted
in the figure as lines are the corresponding coupling terms πλ4CLs,wCLt,wVp/(2λ1λ2G)
evaluated using the curve fits given in (3.9). The ratio between the two corresponds
to the shear–translation correction function, fst (Res, Vp/G). It can be readily seen
that for Vp/G � 0, there is reasonable agreement between the symbols and the
lines. Thus, when the particle translates against the shear, the proposed model is
adequate to capture the combined effect of shear and translation without a correction
factor. In contrast, the difference increases with Vp/G when the particle translates
in the direction of shear flow reducing the relative velocity. Appendix A shows a
simple empirical expression for fst (Res, Vp/G) obtained from the data presented in
figure 12(b). The lift coefficients evaluated with the inclusion of the correction factor
fst (as given in (A 2)) are plotted in figure 12(a) as lines. The agreement is quite good.
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Figure 13. Drag coefficients of a sliding particle in a linear shear flow. (a) Numerical results
are plotted as symbols and the proposed drag correlation (3.18) including the correction
gst (Res, Vp/G) is shown as lines. (b) Comparison of simulation results (symbols) against

the linear superposition of contributions, CDs,w − CDt,w

(
Vp/G

)
|Vp/G| (lines). The difference

between the two will be accounted for by the correction. For the case of Vp/G = 0.75, the drag
coefficient is negative, so absolute values are shown.

The simulation results for the drag coefficient for the different cases are presented
as symbols in figure 13(a). The drag coefficient decreases rapidly with increasing Vp/G

and a log scale is used to capture this large variation. From (3.8) it can be seen that
for a particle almost in contact with the wall (L = 0.505), the effect of translation
on drag force dominates over that due to shear at small Reynolds number. This
is to be expected due to the logarithmic increase in translational drag as the wall
is approached. In particular, it can be seen that at small Reynolds numbers, the
translational drag equals the shear drag when Ret ≈ Res/2. This in turn translates
to (Vp/G) ≈ 0.5. As a result, for a particle translating in the direction of shear, it
can be expected that as non-dimensional translational velocity increases above 0.5,
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the drag force will reverse sign and point in the direction opposite to the ambient
shear. The present finite-Reynolds-number simulation results for Vp/G = 0.5 remain
positive, but substantially smaller and closer to zero. The drag force for Vp/G = 0.75
is observed to be consistently negative at all Reynolds numbers, which is in agreement
with the theoretical expectation. Because of the log scale, in figures 13(a) and 13(b),
the absolute value of the drag coefficient is shown for Vp/G = 0.75.

The computed drag presented in figure 13(b) was compared with the linear
superposition as given by CDs,w − CDt,w̃(Vp/G) |Vp/G|, which was evaluated using
the curve fits given in (3.8). As observed for the lift coefficient, the agreement
between the actual drag and the linear superposition was observed to be quite
good for Vp/G � 0. Thus, a simple addition of the shear and translation drag
contributions is sufficient when the particle translates against the shear flow. In
contrast, when the particle translates in the direction of shear, although the
drag coefficient is small, it deviates from the simple addition of the individual
contributions. Appendix A shows an empirical expression for gst (Res, Vp/G) obtained
by curve fitting the difference between the actual computed drag and simple additive
superposition. Figure 13(a) shows the proposed superposition (3.17), including the
correction function gst (Res, Vp/G) plotted as lines along with the actual computed
drag data (symbols). The agreement between the correlation and the actual data is
satisfactory.

The flow streamlines for two sample cases of (a) Res = 10, Vp/G = −1 and (b)
Res = 10, Vp/G = 1 are shown in figures 14(a) and 14(b). The streamlines are plotted
in a frame attached to the particle. Thus, for the case of Vp/G = 1 in figure 14(b),
the relative ambient flow below the particle centre is directed right to left, while
that above the particle centre is directed left to right. This contributed to the large
recirculation regions that exist both to the left and the right of the particle. For a
particle translating against the shear flow (Vp/G = −1), in the frame attached to the
particle, the ambient flow (including the wall) moves from left to right and the effect
of the wake appears as a small region of reverse flow. The corresponding pressure
contours for the above two cases are shown in figures 14(c) and 14(d). For the case of
Vp/G = −1, the large fore–aft asymmetry contributes to the enhanced drag and the
dominant low pressure above the particle is responsible for the enhanced lift force.
In contrast, for Vp/G = 1, since the flow close to the wall has reversed direction in
the frame moving with the particle, the high-pressure region is to the right lower
side of the particle and, to the left lower side, the pressure is lower. This strong
pressure difference over the lower half of the particle is due to the flow being forced
to go around the small gap and is not compensated by the left-to-right ambient
flow over the top part of the particle. This contributes to the drag reversal that was
observed in figure 13. The pressure distribution is such that the contribution to lift
is small. This behaviour qualitatively remains the same at higher Reynolds numbers
as well.

The vortical structures, as extracted by iso-surface of swirling strength, for two
cases Res = 10, Vp/G = −1 and Res = 100, Vp/G = −1 are shown in figures 14(e)
and 14(f). When the particle translates counter to the shear flow, the relative velocity
increases and the vortex structure intensifies. In particular, in figure 14(f), the Reynolds
number based on relative velocity is 200 and a tendency towards downstream
rollup of vortex structure can be seen (the flow still remains steady and there is
no periodic shedding). When the particle translates in the direction of ambient shear,
the vortex structures are observed to be relatively weak and are confined close to the
particle.
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Figure 14. Flow features (streamlines, pressure contours and vortical structures (λci = 1.5))
of a sliding particle in a linear shear flow. (a), (c) and (e) Res = 10, Vp/G = −1; (b) and
(d) Res = 10, Vp/G = 1; (f) Res = 100, Vp/G = −1.

3.4. Spinning particle very close to a wall in a linear shear flow

Here we perform simulations of a particle close to a flat wall (L = 0.505) and spinning
in the linear shear flow. The particle is fixed at a specified location and only allowed to
spin along z-axis. If the direction of rotation is positive (counterclockwise as viewed in
figure 1) and the shear flow is directed in the x-direction, then the drag contribution
due to rotation tends to oppose that from shear, resulting in lower values of the drag
force. On the other hand, more likely the x-directed shear flow will result in negative
particle rotation (clockwise as seen in figure 1). In this case, particle rotation and
ambient shear will cooperate to increase the drag force. Interestingly, as we will see
below, the lift superposition behaves in a similar manner.

Simulations were performed for a range of shear Reynolds number (1 � Res � 100)
and a range of relative rotation (−1 � Ω/G = Ω̃/G̃ � 1). The relative velocity between
the particle and the undisturbed ambient flow at the particle centre is the same as
the shear velocity, since a rotating particle does not have any translational velocity.
Figure 15(a) shows the lift coefficient against shear Reynolds number for different
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Figure 15. (a) Lift coefficients of a rotating particle in a linear shear flow; numerical
results are presented as symbols and the superposition given in (3.15) is plotted as lines.
(b) Comparison of

(
CLsΩ,w − CLs,w − CLΩ,w(Ω/G)2

)
(symbols) with the coupling term,

−πλ5CLs,wCLΩ,wΩ/(2λ1λ3G) (lines).

relative rotations. In the figure, the results of the numerical simulations are shown
as symbols. As discussed above, substantial increase in lift results in the case of
negative (clockwise) particle rotation and correspondingly a decrease in lift force can
be observed in the case of positive (counterclockwise) particle rotation. The effect of
rotation persists over the entire range of Reynolds number considered.

In order to evaluate the shear–rotation cross-coupling effect, the computed lift
(CLsΩ,w) minus (CLs,w − CLΩ,w(Ω/G)2) is plotted as symbols and the corresponding
coupling term (−πλ5CLs,wCLΩ,wΩ/(2λ1λ3G)) as lines in figure 15(b). The difference
between the two is considerable over the entire range of Reynolds number and
rotation speeds, i.e. the shear–rotation coupling has a significant effect on lift. The
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Figure 16. Drag coefficients of a rotating particle in a linear shear flow. Numerical results
are plotted as symbols and the proposed drag correlation (3.19) including the correction
gsΩ (Res,Ω/G) is shown as lines.

ratio between the two terms corresponds to the shear–rotation correction function,
fsΩ (Res, Ω/G). In Appendix A, the computational results presented in figure 15(b)
is used to develop an empirical correlation for fsΩ (Res, Ω/G). The lift correlation
given in (3.14), with the expression (A 4) for fsΩ taken into account, are plotted
in figure 15(a) as lines. The agreement between the actual numerical result and the
proposed correlation is good over the entire range.

In Figure 16 the drag coefficients evaluated from the numerical simulations are
plotted as symbols for the various cases. It can be seen that the effect of particle
rotation on drag is not very strong. Here we only consider linear superposition as
given by CDs,w − CDΩ,w̃(Ω/G)|Ω/G| and ignore the binary coupling term included in
(3.18). The linear superposition is plotted as lines in figure 16. It is clear that linear
superposition without considering the coupling terms gsΩ (Res, Ω/G) is sufficient to
predict the drag coefficients under the conditions we considered here. Therefore, we
conclude that in (3.16) and (3.18), we can assume gsΩ (Res, Ω/G) ≈ 0.

3.5. Particle spinning and translating on a wall

In this case, we perform simulations of a particle close to a flat wall (L = 0.505)
and having both translation and rotation in a quiescent ambient fluid. The particle
is considered to translate with velocity (Ṽp) parallel to the wall and rotate with an

angular velocity (Ω̃) about the z -axis. If a particle translates but does not rotate
(Ω̃ = 0), then the particle can be considered to be in a pure ‘sliding’ motion. In the
limit Ω̃d/(2Ṽp) = Ω/Vp = −1, the particle perfectly rolls on the wall without any
slip. For other non-zero values of Vp and Ω , the particle is in a partial rolling and

partial slipping state. The most likely scenario of rolling motion is one where Ṽp

and Ω̃ are of opposite signs (i.e. ṼpΩ̃ < 0). But, in the case of ṼpΩ̃ > 0, a particle is
translating with a back-spin or a reversed rotation. The problem of a sphere moving
down an incline in a stagnant fluid has been considered in the past and theoretical
and computational results (Cherukat & McLaughlin 1990; Zeng et al. 2005) suggest
that the particle rotation under steady state (zero net drag and zero net torque) will
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Figure 17. (a) Lift coefficients of a translating–rotating particle in a stagnant ambient flow;
numerical results are presented as symbols and the superposition given in (3.16) is plotted as
lines. (b) Comparison of (CLtΩ,w − CLt,w − CLΩ,w(Ω/Vp)2) (symbols) with the coupling term,
−πλ6CLt,wCLΩ,wΩ/(2λ2λ3Vp) (lines).

be such that particle rolls down the incline and that the rotation magnitude is weak.
However, under conditions of non-Newtonian fluid or in the presence of multiple
bounding walls, it has been observed experimentally that a particle can have reversed
rotation (Humphrey & Murata 1992; Liu et al. 1993).

The computations were performed for a range of translation Reynolds number
(1 � Ret � 100) and a range of scaled rotational velocity (−1 � Ω/Vp � 1). Of particu-
lar relevance to this case of translating–rotating particle is the recent experimental and
numerical efforts of Stewart et al. (2010). They studied the structure and dynamics of
the wake behind a translating particle under both forward and reverse rotations. Their
investigation covers a translation Reynolds number ranging from 100 to 350 and thus
covered both steady and unsteady wake regimes. Here, by restricting to only Reynolds
number below 100, we consider only the steady wake regime. In figure 17(a) the
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Figure 18. Drag coefficients of a translating–rotating sphere in a stagnant ambient flow.
Numerical results are plotted as symbols and the proposed drag correlation (3.20) including
the correction gtΩ (Ret ,Ω/Vs) is shown as lines.

numerically computed lift coefficient CLtΩ,w is plotted as symbols against Ret for
varying values of Ω/Vp . It can be seen that the lift coefficient monotonically decreases
with increasing Ret for all values of particle rotation considered. The lift coefficient
for the cases of a positive Ω/Vp is larger and that for negative Ω/Vp is lower. In other
words, a particle rotating with a back-spin will experience higher lift, while a particle
rolling on the wall (rotational motion consistent with translation) will experience
lower lift force. From the figure, it is clear that the effect of particle rotation on lift
is significant.

In order to evaluate the role of the translation–rotation coupling term given in (3.15),
in figure 17(b) the computed lift coefficient minus CLt,w + CLΩ,w(Ω/Vp)2 is plotted
as symbols for different combination of Ret and Ω . Also plotted in the figure as
lines are the corresponding coupling term −πλ6CLt,wCLΩ,wΩ/(2λ2λ3Vp) evaluated
using the curve fits given in (3.9). The ratio between the two corresponds to the
translation–rotation correction function, ftΩ (Ret , Ω/Vp) . In Appendix A we present
the empirical expression for ftΩ (Ret , Ω/Vp) obtained from the results presented in
figure 17(b). Equation (3.15) is used to estimate the lift coefficient including the
correction function given in (A 5) and the result is presented in figure 17(a) as
lines along with the numerical results. The agreement between the two indicates the
adequacy of the proposed correlation.

Figure 18 shows the drag coefficient plotted against the translational Reynolds
number for different values of Ω/Vp . The drag coefficients obtained from the
numerical simulations are shown as symbols. As in the case of shear–rotation coupling
seen in figure 16, the effect of negative (clockwise) particle rotation is to decrease the
drag, while the effect of positive rotation is to increase the drag, but the effect of
particle rotation on the drag force is quite weak. The lines in figure 18 represent the
linear superposition (−CDt,w̃ −CDΩ,w̃(Ω/Vp) |Ω/Vp|) given in (3.19) without including
the correction function gtΩ . From this figure, we can see that the effect of translation
on drag is dominant and that of rotation is weak and can be ignored. We conclude
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Figure 19. Flow features (streamlines, pressure contours and vortical structures (λci = 0.1)) for
a translating–rotating particle in a stagnant ambient fluid. (a), (c) and (e) Ret = 10, Ω/Vp = −1;
(b), (d) and (f) Ret = 10, Ω/Vp = 1.

that the translation–rotation cross-term for drag could be ignored over the parameter
range considered. Note that we show the negative of the drag coefficient (−CDtΩ,w̃)
in figure 18, since the dominant translation-induced drag (CDt,w̃) is defined to be
positive in (3.8). The effect of the direction of translation on drag is accounted for
through the denominator (Vp |Vp|) in (3.19). Also, the results are in good agreement
with those of Stewart et al. (2010) obtained from their higher order accurate spectral
element methodology. Their results nearly overlap on the present drag results and
therefore are not explicitly shown in the figure.

The flow features are shown in figure 19 for two sample cases: (a, c and e)
Ret = 10, Ω/Vp = −1 and (b, d and f) Ret = 10, Ω/Vp = 1. The streamlines for the
two cases are shown in figures 19(a) and 19(b). Here we consider the particle to
translate from right to left, i.e. Ṽp < 0. Since the streamlines are plotted in a frame
attached to the particle, main flow is directed left to right. If the particle’s translation
and rotation are of opposite signs, i.e. Ω/Vp < 0, then the particle’s rotation is
consistently rolling and for Ω/Vp = −1, the particle is in perfect rolling motion. In
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this case, the bottom point of the particle that is in contact with the wall is stationary,
while the relative velocity at the top of the particle is twice the translation velocity.
The shear around the top surface of the particle is enhanced and, as can observed
in figure 19(a), the flow behind a particle is dragged from the bottom to the top.
In contrast, for Ω/Vp > 0, the particle is in back-spin motion and thus the surface
motion of the particle is the same as that of the ambient flow due to translation.
In figure 19(b) (Ω/Vp = 1), it can be seen that the flow smoothly passes along the
particle surface without separation.

The corresponding pressure contours for the above two cases are shown in figures
19(c) and 19(d). The line contours are plotted in the range of −5 to 5 with 0.1
increments. As the particle is translating from right to left, the dominant high and
low pressures are generated to the left and right of the particle. For Ω/Vp = −1
in figure 19(c), since the particle rotates in counterclockwise direction, relatively
higher and lower magnitude pressures are positioned at the small gap between the
particle and the wall. In contrast, in figure 19(d), for Ω/Vp = 1, we can see that
lower pressure region is raised somewhat higher behind the particle since the back-
spin of the particle contributes to accelerating the flow behind the particle. The
corresponding pressure contours for both forward and reverse rotating particle at
the higher translation Reynolds number of 100 are in good agreement with those
presented in Stewart et al. (2010) and, as a result, they are not shown here. As seen
earlier, this change in pressure distribution contributes to increase in both the drag and
lift forces on the particle. Vortex formations of a translating and rotating particle are
shown in figures 19(e) and 19(f) at the higher Reynolds number of 100. For Ω/Vp < 0,
since the shear above the particle increases, the vortex structure around the particle in
its immediate surroundings in the wake region intensifies. At this higher Re, indications
of a double threaded wake can be observed, which is often observed at higher Re even
in the absence of particle rotation. For Ω/Vp = −1, the particle rotation reduces shear
above and in the wake of the particle, and thus, the vortex structure is absent on the
symmetry plane, except at the front. A necklace-type vortex structure that is confined
to the sides of the sphere is observed. The rotation of the streamwise vortex pair in
this case is such that the fluid is pumped up away from the wall in the gap between
the particle and the wall. Correspondingly, the induced motion is such that the lateral
separation between the two legs remains nearly fixed as they extend downstream.
These observations are exactly the same as those reported by Stewart et al. (2010)
from both their experimental and computational results. The vortex structure at lower
Reynolds numbers is much weaker and is confined to be around the sphere.

4. Conclusions
Here we have taken a step forward towards better understanding and modelling

of hydrodynamic forces acting on a finite-sized particle moving near a plane wall
in a linear shear flow. The drag and lift forces and torque on such a particle can
be considered to arise from the superposition of three different mechanisms: forces
due to shear, forces due to particle translation and forces due to particle rotation.
In the limit of small Reynolds numbers, the drag on the particle can be simply
given by a linear superposition of the three different mechanisms. In this limit, the
lift force, however, has been shown to be a superposition of six contributions: three
arise from the individual mechanisms (ambient shear, translation and rotation) while
the other three contributions arise from shear–translation, translation–rotation and
shear–rotation binary couplings (Krishnan & Leighton 1995).
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Apart from the non-dimensional distance from the wall, three Reynolds numbers,
namely shear, translation and rotation Reynolds numbers, can be defined and these
four parameters together control the behaviour. The present investigation is limited
to the case of a particle in contact with the wall. (In the case of particle translation
and rotation, there is logarithmic singularity, and thus, in these cases, we consider
a very small gap of 0.1 % between the particle and the wall.) The objective of the
present paper is to extend the low-Reynolds-number understanding to finite Reynolds
numbers and, in particular, we cover the range where the Reynolds numbers associated
with each of the shear, translation and rotation mechanisms are limited to the range
0 � Res, Ret , ReΩ � 100. Note that the corresponding Reynolds number based on
relative velocity has a larger range and in the case of particle translating against the
shear flow, the Reynolds number based on relative velocity reaches 200.

Over this limited range of Reynolds number, the flow around the particle in
all configurations considered here remains steady. For the case of a particle in an
unbounded uniform ambient flow, the critical Reynolds number for the onset of
unsteadiness has been shown to be about 270 (Johnson & Patel 1999; Bagchi, Ha &
Balachandar 2001). The asymmetric effects of linear shear and the presence of a
nearby wall are to decrease the critical Reynolds number, while the added viscous
effect due to the wall will tend to delay the onset of unsteadiness to higher Reynolds
number. Based on the results of Zeng et al. (2005) and Stewart et al. (2010) for a
particle nearly in contact with a wall, the critical Reynolds number for unsteadiness
can be expected to be higher than 300. Thus, all the results presented in this paper
pertain to only the steady-flow regime.

Motivated by the low-Reynolds-number drag and lift superpositions, here we
propose functional relations for drag and lift forces in terms of the three Reynolds
numbers (see (3.11) and (3.16)) that are valid at finite Re. These expressions are
physically motivated and rely on superposition of the individual mechanisms and
their cross-coupling effects. Thus, investigations of finite-Reynolds-number behaviour
of the following three elementary problems: (i) a stationary particle in contact with
a wall in a linear shear flow, (ii) a translating particle almost in contact with a wall
surrounded by quiescent fluid and (iii) a translating particle almost in contact with a
wall surrounded by quiescent fluid, form the foundation on which the superposition is
built. The former two problems (i and ii) and their finite-Reynolds-number expressions
for drag and lift have already been addressed in Zeng et al. (2005, 2009). Here we first
investigate in detail the problem of particle spinning near a flat wall in a quiescent
fluid. The rotation Reynolds number and distance from the wall are systematically
varied to obtain appropriate expressions for drag and lift forces. The corresponding
finite Reynolds number drag and lift forces for the three different mechanisms are
given in (3.8) and (3.9).

The proposed finite-Reynolds-number expression for drag and lift we recognize
increased importance of nonlinearity and deviations from the low-Reynolds-number
behaviour. For simplicity, we still limit coupling between the different mechanisms to
be only binary in nature (shear–translation, shear–rotation and translation–rotation)
and departure from the low Reynolds number is accounted in terms of correction
functions. Here we consider the three binary interaction problems one at a time,
namely (i) linear shear flow + translating particle, (ii) linear shear flow + rotating
particle and (iii) translating + rotating particle in a stagnant ambient flow. We
perform fully resolved simulations using the immersed boundary technique over a
range of shear, translation and rotation Reynolds numbers. The simulation results
are used to obtain approximate expressions for the correction functions ((A 2)–(A 5)).
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Quantity CD,Ω CL,Ω CM,Ω CLst,w CDst,w̃ CLsΩ,w CDsΩ,w̃ CLtΩ,w CDtΩ,w̃

Equation (3.4) (3.5) (A1) (3.13) (3.17) (3.14) (3.18) (3.15) (3.19)
R2 0.9998 0.9792 0.9752 0.9746 0.9835 0.9850 0.9975 0.9975 0.9385

Table 3. Goodness values computed as defined in (4.1) for the nine different empirical
correlations presented for drag, lift and moment coefficients.

In summary, (3.11) together with (3.9), (A 2), (A 4) and (A 5) offer a composite
expression for lift on a particle undergoing arbitrary motion in contact with the
wall in a linear shear flow. The range of validity of these empirical relations is
limited to Reynolds numbers (based on individual shear, translation and rotation
mechanisms) being less than 100. Similarly, (3.16) together with (3.8) and (A 3) offer
a composite expression for drag on a particle undergoing arbitrary motion in near
contact with the wall (L = 0.505) in a linear shear flow. Efforts were made to keep
these correlations simple, but at the same time, provide an accurate approximation
for the computed direct-numerical-simulation (DNS) results. The accuracy of the
correlations is evaluated with the R2 goodness test defined as

R2 = 1 −
∑

(ξfit − ξDNS )2∑
(ξDNS − ξ̄DNS )2

, (4.1)

where ξDNS represents any of the drag or lift correction obtained from the simulation
results being interpolated and ξfit is the corresponding quantity obtained from the
empirical relation. Here the sum is over all data points used in obtaining the empirical
relation (for example, in the case of fst , the summation is over all combinations of
Res and Vp/G for which the simulations have been performed). Also the overbar
indicates an average over all the data points. Thus, the goodness factor provides
a measure of how well the empirical relation approximates the computed data in
comparison to the distribution of the data. Table 3 shows the goodness for the nine
empirical relations for drag, lift and moment coefficients presented in this paper.

A value close to 1 will correspond to very good approximation, while values far
different from 1 will indicate inaccuracies in the approximation. It is clear from table 3
that all the empirical fits are good to within about 6 %. It should be pointed out
that the empirical relations are not perfect and part of the error could be due to our
restriction to only quadratic interactions in the model. Further improvement could
be made by extending the model to include higher order interactions. But such an
attempt was not pursued, partly due to its complexity and partly due to the reasonable
success in approximating only with the quadratic coupling.

We envision the above-presented correlations to be used in accurate computations
of particle motion through wall-bounded shear flows. In this context, even if the
wall-bounded flow is steady, the particle motion can be unsteady. For instance, the
particle can be moving towards or away from the wall, or could be accelerating
or decelerating along the streamwise direction. The present paper will only provide
improved approximations for the quasi-steady component of drag and lift forces,
based on local shear, and instantaneous translational and rotational motions of
the particle. Depending on particle-to-fluid density ratio, additional unsteady forces
might become important in dictating the particle motion. The presence of the wall
can have an influence on the unsteady added mass and history forces and contribute
to deviations from their classic behaviour. Such effects are not well understood and,
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if important, must be taken into account in order to accurately follow the unsteady
dynamics of particles close to a solid boundary.
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Appendix. Empirical expression obtained from the numerical data

Moment coefficient of a particle rotating in quiescent fluid near a flat wall. The
numerical results for the moment coefficient of a particle undergoing pure rotational
motion close to a wall shown in figure 10 are used to obtain the following empirical
expression:

CM,Ω = exp(−3ε)

[
− 64

ReΩ

(1 + 0.0011ReΩ )

(
2

5
ln ε − 0.3817

)]
+ (1 − exp(−4ε))

×
[

64

ReΩ

(
1 +

5

16(1 + ε)3

)
+ 0.00225ReΩ

]
for all ε, ReΩ � 100. (A 1)

This expression reduces to the low-Reynolds-number theories as Re → 0. The above
expression is shown in figure 10(a) as lines and can be seen to well approximate the
numerical results.

Lift contribution from shear–translation binary coupling. The data presented in
figure 12(b) over a range of Res and Vp/G are used to develop a simple approximation
for fst (Res, Vp/G), which is given below:

fst

(
Res,

Vp

G

)
= 1 +

(
2.156

(
Vp

G

)2

+ 1.789
Vp

G
+ 0.704

)
tanh(0.02Res). (A 2)

In the small-shear-Reynolds-number limit (Res 	 1), the above empirical expression
approaches the correct limit of unity (fst (Res → 0, Vp) → 1). Therefore, the lift
correlation given in (3.14) correctly matches with Krishnan & Leighton’s (1995)
theory.

Drag contribution from shear–translation binary coupling. The difference between the
actual computed drag and that obtained from an additive superposition of only the
shear and translation is shown in figure 13(b). These data are used to obtain an
approximate estimation of gst (Res, Vp/G) as given below:

gst

(
Res,

Vp

G

)
=

(
2.03

Vp

G
− 8.18

)
Re0.3

s −
(

2.8
Vp

G
− 10.73

)
Re0.25

s . (A 3)

The above expression reaches the correct limit of gst (Res → 0,
Vp

G
) → 0.

Lift contribution from shear–rotation binary coupling. Using the results presented in
figure 15(b) we have developed a simple approximation for fsΩ (Res, Ω/G), which is
given below as

fsΩ

(
Res,

Ω

G

)
= 1 +

(
0.251

Ω

G
+ 1.018

)
Re0.66

s . (A 4)
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The above correction function has been developed to satisfy the requirement that in
the small-shear-Reynolds-number limit (Res 	 1), the correction function fsΩ must
approach a value of unity. Note that the lift correlation given in (3.14) thus matches
with Krishnan & Leighton’s (1995) theory in the low-Reynolds-number limit.

Lift contribution from translation–rotation binary coupling: The results presented in
figure 17(b) are used to obtain the following correlation:

ftΩ

(
Ret ,

Ω

Vp

)
= 1 +

[
0.0122

Ω

Vp

(
Ω

Vp

− 2

)
+ 0.0548

]
Re0.85

t . (A 5)

As in the other correction functions, in the zero-Reynolds-number limit (Ret → 0),
the above function asymptotically approaches unity (i.e. ftΩ (Ret → 0, Ω/Vp) → 1)
and thus the lift correlation matches with the Krishnan & Leighton’s (1995) theory
in the low-Reynolds-number limit.
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